Balkan Mathematical Olympiad 2016 Solutions

  1. Find all injective functions $f: \mathbb R \rightarrow \mathbb R$ such that for every real number $x$ and every positive integer $n$, $$\left|\sum_{i=1}^n i\left(f(x+i+1)-f(f(x+i))\right)\right|<2016$$
  2. Let $ABCD$ be a cyclic quadrilateral with $AB<CD$. The diagonals intersect at the point $F$ and lines $AD$ and $BC$ intersect at the point $E$. Let $K$ and $L$ be the orthogonal projections of $F$ onto lines $AD$ and $BC$ respectively, and let $M$, $S$ and $T$ be the midpoints of $EF$, $CF$ and $DF$ respectively. Prove that the second intersection point of the circumcircles of triangles $MKT$ and $MLS$ lies on the segment $CD$.
  3. Find all monic polynomials $f$ with integer coefficients satisfying the following condition: there exists a positive integer $N$ such that $p$ divides $2(f(p)!)+1$ for every prime $p>N$ for which $f(p)$ is a positive integer. (A monic polynomial has a leading coefficient equal to 1)
  4. The plane is divided into squares by two sets of parallel lines, forming an infinite grid. Each unit square is coloured with one of $1201$ colours so that no rectangle with perimeter $100$ contains two squares of the same colour. Show that no rectangle of size $1\times1201$ or $1201\times1$ contains two squares of the same colour. (Any rectangle is assumed here to have sides contained in the lines of the grid)

0 comments:

Post a Comment

APMO (13) Balkan MO (10) Bất Đẳng Thức (31) Benelux (8) BoxMath (2) Brazil (2) Bulgaria (3) BWC (27) BxMO (8) Canada (13) Chuyên Đề (36) Collection (4) Correspondence (1) CPS (3) Crux (2) Đại số (2) Đặng Việt Đông (1) Đề Thi (24) E-Book (13) EGMO (6) ELMO (8) EMC (5) Finland (4) G. Polya (3) Gặp Gỡ Toán Học (3) Geometry (4) Hình Học (10) HKUST (1) Học Sinh Giỏi (6) HongKong (1) Hứa Lâm Phong (1) Hùng Vương (7) IMC (22) IMO (31) India (18) Inequality (6) International (137) Iran (2) JBMO (6) JBMO TST (7) Journal (8) K2pi (1) Kể chuyện Toán học (2) Kvant (1) Kỷ yếu (3) Lê Phúc Lữ (1) Lớp 10 (4) Lượng giác (1) Mark Levi (1) Mathscope (8) MEMO (5) MO 1969 (1) MO 1970 (1) MO 1971 (1) MO 1972 (1) MO 1973 (1) MO 1974 (1) MO 1975 (1) MO 1976 (1) MO 1977 (1) MO 1978 (1) MO 1979 (1) MO 1980 (1) MO 1990 (1) MO 1991 (1) MO 1992 (1) MO 1993 (1) MO 1994 (2) MO 1995 (3) MO 1996 (3) MO 1997 (5) MO 1998 (5) MO 1999 (5) MO 2000 (5) MO 2001 (8) MO 2002 (7) MO 2003 (6) MO 2004 (6) MO 2005 (8) MO 2006 (8) MO 2007 (9) MO 2008 (11) MO 2009 (11) MO 2010 (15) MO 2011 (14) MO 2012 (20) MO 2013 (18) MO 2014 (15) MO 2015 (14) MO 2016 (20) MO 2017 (8) Moscow (1) MYM (28) National (82) Nesbitt (1) Nguyễn Anh Tuyến (1) Nguyễn Duy Khương (1) Nguyễn Duy Tùng (1) Nguyễn Hữu Điển (1) Nguyễn Mình Hà (1) Nguyễn Phú Khánh (1) Nguyễn Thúc Vũ Hoàng (1) Nguyễn Văn Mậu (3) Nhóm Toán (3) Olympiad Corner (1) Olympiad Preliminary (2) Olympic Toán (9) PAMO (1) Phạm Đức Tài (1) Pham Kim Hung (2) Phạm Quốc Sang (1) Philippines (4) Phương trình hàm (2) Problems (1) PT-HPT (4) PTNK (1) Putnam (16) RMM (9) Romania (7) Russia (1) Sách Thường Thức Toán (4) Sách Toán (28) Serbia (13) Sharygin (7) Shortlists (31) Số học (2) Talent Search (1) Tạp chí (8) THPTQG (7) THTT (5) Titu Andreescu (2) Tổ hợp (4) Toán 10 (5) Toán Chuyên (3) Toán Quốc Gia (1) Toán Quốc tế (3) Toán Tuổi Thơ (1) TOT (1) Trắc Nghiệm (1) Trại hè (10) Trại hè phương Nam (3) Trần Nam Dũng (1) Trần Phương (1) Trần Quang Hùng (1) Trần Quốc Anh (1) TST (8) Tuyển sinh (6) Tuyển Tập (10) Tuymaada (1) Undergraduate (42) Updated (12) USA (12) Vasile Cîrtoaje (3) Vietnam (1) Viktor Prasolov (1) VIMF (1) VirginiaTech (1) VMEO (1) VMF (3) VMO (8) Võ Quốc Bá Cẩn (11) Vojtěch (1) Zhou Yuan Zhe (1)