Mexico Mathematical Olympiad 2014

Each of the integers from 1 to 4027 has been colored either green or red. Changing the color of a number is making it red if it was green a...

  1. Each of the integers from 1 to 4027 has been colored either green or red. Changing the color of a number is making it red if it was green and making it green if it was red. Two positive integers $m$ and $n$ are said to be cuates if either $\frac{m}{n}$ or $\frac{n}{m}$ is a prime number. A step consists in choosing two numbers that are cuates and changing the color of each of them. Show it is possible to apply a sequence of steps such that every integer from 1 to 2014 is green.
  2. A positive integer $a$ is said to reduce to a positive integer $b$ if when dividing $a$ by its units digits the result is $b$. For example, 2015 reduces to $\frac{2015}{5} = 403$. Find all the positive integers that become 1 after some amount of reductions. For example, 12 is one such number because 12 reduces to 6 and 6 reduces to 1.
  3. Let $\Gamma_1$ be a circle and $P$ a point outside of $\Gamma_1$. The tangents from $P$ to $\Gamma_1$ touch the circle at $A$ and $B$. Let $M$ be the midpoint of $PA$ and $\Gamma_2$ the circle through $P$, $A$ and $B$. Line $BM$ cuts $\Gamma_2$ at $C$, line $CA$ cuts $\Gamma_1$ at $D$, segment $DB$ cuts $\Gamma_2$ at $E$ and line $PE$ cuts $\Gamma_1$ at $F$, with $E$ in segment $PF$. Prove lines $AF$, $BP$, and $CE$ are concurrent.
  4. Let $ABCD$ be a rectangle with diagonals $AC$ and $BD$. Let $E$ be the intersection of the bisector of $\angle CAD$ with segment $CD$, $F$ on $CD$ such that $E$ is midpoint of $DF$, and $G$ on $BC$ such that $BG = AC$ (with $C$ between $B$ and $G$). Prove that the circumference through $D$, $F$ and $G$ is tangent to $BG$.
  5. Let $a, b, c$ be positive reals such that $a + b + c = 3$. Prove \[ \frac{a^2}{a + \sqrt[3]{bc}} + \frac{b^2}{b + \sqrt[3]{ca}} + \frac{c^2}{c + \sqrt[3]{ab}} \geq \frac{3}{2}.\] And determine when equality holds.
  6. Let $d(n)$ be the number of positive divisors of a positive integer $n$ (including $1$ and $n$). Find all values of $n$ such that $n + d(n) = d(n)^2$.



Balkan,1,Bosonia,1,Brazil,1,Bulgary,1,Canada,1,CentroAmerican,1,CGMO,1,China,5,Cono Sur,2,France,1,Germany,2,Greece,2,IberoAmerican,1,IMO,1,India,2,Indonedia,1,International,40,Italy,1,Itan,1,Japan,1,JBMO,2,Kazakhstan,1,Korea,2,Macedonia,1,Mediterrane,7,Mediterranean,3,MEMO,1,Mexico,1,Miklós Schweitzer,1,Moldova,1,National,29,Olympic Revenge,1,Paenza,1,Paraguayan,1,Rusia,1,TST,9,Turkey,1,Tuymaada,19,Undergraduate,1,Zhautykov,1,
MATHEMATICAL OLYMPIAD PROBLEMS: Mexico Mathematical Olympiad 2014
Mexico Mathematical Olympiad 2014
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy